LEAN FLOW TECHNOLOGY

- MODULE LFT106 - **BALANCE AND FLOW**

Copyright © 2001-2008 – Philippe Magnier – All rights reserved

Module LFT106 - Release 8.00 US

LEAN FLOW TECHNOLOGY BALANCE AND FLOW

PURPOSE

- Operational Definition.
 - "At, or Below" TAKT Time Targets to create Balance.
- Resolve Imbalances.
- In-Process Kanban.
- Balance and Flexibility.
 - U-Cell Design.
- Physical Implementation.

BALANCE AND FLOW OVERVIEW

OPERATIONAL DEFINITION.

- Optimum Flow is achieved by Grouping Tasks "<u>At, or Below" TAKT</u> <u>Time</u>.
 - When Actual Work Content cannot be Grouped "At or Below" TAKT Time Targets to create Balance = <u>IMBALANCE</u>.

Ean Flow Consu

- Resolve Imbalances :
 - 1. Eliminate Work Content. NVA.
 - 2. Move Work from one Operation to the Next.
 - 3. Inventory Investment. IPK's.

4. Additional Resources. – \$\$\$\$.

BALANCE AND FLOW RESOLVE IMBALANCES

.can Flow Consulting ← Creating World-Class Lean Enterprise

2 – Move Work Elements

4 - Additional Resources

IN-PROCESS KANBAN – IPK's OVERVIEW

- Resolving Imbalance.
- ... <u>Inventory Investment</u>.
- Supported with Calculations.
- Visual Signal to Work or Move.
- First In First Out Management.

IN-PROCESS KANBAN FORMULA

$$\#IPK = \frac{I \times C}{TAKT}$$

- I : Imbalance : I=AT-TAKT.
- C : Cycle of Imbalance : C=H/AT.
- H : Effective Work Time per Shift.

Copyright © 2001-2008 – Philippe Magnier – All rights reserved

IN-PROCESS KANBAN A TYPICAL CASE OF ... CALCULATION

Creating World-Class Lean Enterprise

Copyright © 2001-2008 - Philippe Magnier - All rights reserved

Module LFT106 - Release 8.00 US

IN-PROCESS KANBAN CALCULATION IN MIXED-MODEL

Creating World-Class Lean Enterprise

IN-PROCESS KANBAN BETWEEN PROCESSES FORMULA

$\#IPK = A \times B$

Between Processes :

A : Shift Difference.

B : D_c per Shift Longer Process.

IN-PROCESS KANBAN A TYPICAL CASE OF ... CALCULATION

- Compare Side by Side Processes.
 - Example between Cast and Spray Processes :
 - Calculate the Shift Difference between Processes.

■ 2 – 1 = **1**

- Select the D_c for Process with Greater Number of Shifts.
 - Cast Process : D_c per Shift = **150**
- #IPK's = A (Shift Difference) x B (D_c per Shift Longer Process)
- #IPK's = 1 x 150 = 150

C Lean Flow Consulting

Creating World-Class Lean Enterprise

IN-PROCESS KANBAN WET LINE

ADDITIONAL WORK AROUND IPK's A TYPICAL CASE OF ...

Additional Work = 5×8.8

<u>RESOURCES</u> FOR ADDITIONAL WORK = 44 min.

BALANCE AND FLOW U-SHAPED CELLS

- First Step of Improvement : U-SHAPED CELLS.
 - Several Operations by Employee.
 - Space Floor Saving.
 - Create Balance.
 - Cells designed for Flexibility.
 - Improve :
 - Machine Utilization.
 - Labor Productivity.
 - Operational Cycle Time.

Copyright © 2001-2008 - Philippe Magnier - All rights reserved

Module LFT106 - Release 8.00 US

BALANCE AND FLEXIBILITY TAKT TIME

Effective Work Time per Shift (mn) : 420 Number of Shift(s) : 1 Nominal D_c : 28 Low D_c : 22 High D_c : 34 TAKT Time (mn) = 15TAKT Time (mn) = 19.1 TAKT Time (mn) = 12.4 TAKT Time (mn) = 12.4

Module LFT106 - Release 8.00 US

BALANCE AND FLEXIBILITY RESOURCES CALCULATION

Total Time from SOE's (mn) : 54.2

Operations : #OP (Dc) = 54.2 / 15 = 3.61 ???

#OP (Dc-20%) = 54.2 / 19.1 = 2.84

$$\#OP(Dc+20\%) = 54.2 / 12.4 = 4.37$$

BALANCE AND FLEXIBILITY CORRECTED CAPACITY

BALANCE AND FLEXIBILITY CORRECTED FLEXIBILITY

Creating World-Class Lean Enterprise

BALANCE AND FLEXIBILITY LOW CAPACITY DEFINITION

BALANCE AND FLEXIBILITY NOMINAL CAPACITY DEFINITION

BALANCE AND FLEXIBILITY HIGH CAPACITY DEFINITION

BALANCE AND FLEXIBILITY FLEXIBLE PRODUCTION SYSTEM

#OP based on Customer Demands.

LEAN FLOW TECHNOLOGY TIMES IN LFT

- TAKT Time.
 - Volume driven Time Targets. By Process.
- Actual Times. AT.
 - From the Sequences of Events. SOE's.
- Operations.
 - Work Grouped within a TAKT Time Target.
- Balance.
 - Between Actual Time at Operation (AT) and TAKT Time, Not Between Operations.

MIXED-MODEL LINE DESIGN PHYSICAL IMPLEMENTATION

- Demand at Capacity.
- TAKT Time.
- Daily Rate.
- Kanban Sizes.
- Method Sheets.
- Sequence of Events.
- Sequence Lists.

- Operational Definition.
- Staffing.
- Effective Work Hours.
- Number of Shifts.
- Replenishment Intervals.
- IPK's Sizes.

Which Should Change Every Day ?

← Creating World-Class Lean Enterprise

MIXED-MODEL LINE DESIGN PHYSICAL IMPLEMENTATION

Creating World-Class Lean Enterprise

MIXED-MODEL LINE DESIGN ... VISUALIZE THE END RESULT

" Imagination is More Important than Knowledge "

Copyright © 2001-2008 - Philippe Magnier - All rights reserved

Albert Einstein

MIXED-MODEL LINE DESIGN WHAT IS THE TRUE FLOW ?

LEAN FLOW TECHNOLOGY BALANCE AND FLOW

SUMMARY

- Operational Definition.
 - "At, or Below" TAKT Time Targets to create Balance.
- Resolve Imbalances.
- In-Process Kanban.
 - Formulae and Calculation.
 - ... Typical Case in Mixed-Model Concept.
 - Additional Work.
- Balance and Flexibility.
 - U-Cell Design.
- Physical Implementation.

LEAN FLOW TECHNOLOGY QUESTIONS

Copyright © 2001-2008 – Philippe Magnier – All rights reserved

Module LFT106 - Release 8.00 US

LEAN FLOW TECHNOLOGY COPYRIGHT

- All presentations included in the Lean Flow Technology program are the property of their respective authors.
- The presentations and files, or part thereof, cannot be reproduced, (re)-sold or (re)distributed without the express written from their authors.
- If you are any questions or comments, please contact us :
 - On the Web site : www.leanflowconsulting.com
 - By Email at : contact@leanflowconsulting.com
- All logos displayed bellow are registered and are the property of Lean Flow Consulting and/or the authors. You are not permitted to use these logos without the prior written agreement of the authors.

